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1. Introduction

Notation:

A: two-dimensional normal complete noetherian local ring
with perfect residue field F

K : its fraction field

P: the set of height one primes ideals of A

What I talk today:

Construct class field theory and arithmetic duality for A (in the
mixed characteristic case).
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1.1. Background

When the residue field F is finite, there is such a theory due to
Saito:

The abelian extensions of K , up to those completely split at
all height one primes ideals of A, are classified by characters
of the “K2-idèle class group” of K .

The completely split extensions are classified by the homology
of the dual graph Γ of a resolution of singularities of A.

There exists a “Hasse principle” exact sequence

0→ H1(Γ,Q/Z)→ H3(K ,Q/Z(2))→
⊕
p∈P

Q/Z sum→ Q/Z→ 0.

The Brauer group of K is Pontryagin dual to the (K1-)idèle
class group of K .
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1.1. Background

On the other hand, there is Serre-Hazewinkel’s geometric local
class field theory:

Let k be a complete discrete valuation field with perfect residue
field F such that char(F ) > 0. Then the group of units O×k has a
canonical structure as a perfect group scheme over F , which we
denote by O×k (perfect means having invertible Frobenius). For a
perfect F -algebra R, we have

O×k (R) = {
∑∞

n=0 ω(an)πn | an ∈ R, a0 ∈ R×},

where ω denotes the Teichmüller lift and π is a prime element of k .
Let k× be the product of O×k with the discrete group scheme πZ.

Theorem (Serre, Hazewinkel)

The abelian extensions of k are classified by isogenies onto k× with
finite constant kernel.
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1.2. The aim

Now we will refine Saito’s two-dimensional theory for A in
Serre-Hazewinkel’s style:

Put perfect group scheme structures on relevant arithmetic
invariants.

Allow the residue field F to be an arbitrary perfect field.

Construct class field theory and arithmetic duality between
these group scheme structures.

We will focus on mixed characteristic A, though the equal
characteristic case should also be interesting.

Things are classical away from p (= char(F )), so we will focus
on the p-primary part.
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2.1. Preliminaries: perfect group schemes

Let

F : perfect field of characteristic p > 0

Algu/F : the (abelian) category of perfections (inverse limit
along Frobenius) of commutative unipotent algebraic groups
over F

For G ∈ Algu/F , let G 0 be its identity component and
π0(G ) = G/G 0 the (finite étale) group of components.

Serre duality

For any connected G ∈ Algu/F , there exists a canonical connected
group GSD ∈ Algu/F such that

GSD(F ) = lim−→
n

Ext1Algu/F
(G ,Z/pnZ)

and (GSD)SD ∼= G .

GSD classifies isogenies onto G with finite constant kernel.
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2.1. Preliminaries: perfect group schemes

For example, for the perfection of the additive group Ga, we have
Ext1Algu/F

(Ga,Z/pZ) ∼= F , where 1 ∈ F corresponds to the
Artin-Schreier sequence 0→ Z/pZ→ Ga → Ga → 0.
Correspondingly, Ga is self-dual, and the Frobenius automorphism
on Ga corresponds to the inverse of Frobenius on Ga. The group
of Witt vectors Wn is also self-dual.

However, we need to treat “bigger” objects such as

W [1/p] = lim−→(W
p→W

p→ · · · ) = lim−→
m

lim←−
n

Wn.

(Note that if Ok = F [[t]] so that O×k ∼= F× ×W (F )N, then
O×k = Gm ×W N.)
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2.1. Preliminaries: perfect group schemes

Definition

Define WF to be the full subcategory of the ind-category of the
pro-category of Algu/F consisting of objects G admitting a
filtration G ⊃ G 0 ⊃ G ′ ⊃ 0 such that

G/G 0 is finite étale,

G 0/G ′ can be written as lim−→n
G ′′n , where each G ′′n ∈ Algu/F is

connected and each G ′′n → G ′′n+1 is injective, and

G ′ can be written as lim←−n
G ′n, where each G ′n ∈ Algu/F is

connected and each G ′n+1 → G ′n is surjective with connected
kernel.

So G 0 is build from Ga by a countable successive extension in an
“ind-pro” manner. The subobject G 0 ⊂ G is unique (but G ′ ⊂ G
is not), so we set π0(G ) = G/G 0.
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2.1. Preliminaries: perfect group schemes

We say G ∈ WF is connected if G = G 0.

Proposition

The Serre duality functor extends to connected groups in WF in a
way compatible with lim−→ and lim←−.
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2.2. Preliminaries: cohomology groups of interest

Recall our notation:

A: two-dimensional normal complete noetherian local ring
with perfect residue field F such that char(F ) = p > 0

K : its fraction field

P: the set of height one primes ideals of A

Assume A has mixed characteristic.

X = SpecA \ {the closed point}
j : U ↪→ X : any dense open subscheme

Hq(U, · ): the étale cohomology functor

View X as an analogue of a proper smooth curve over a p-adic
field.
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2.2. Preliminaries: cohomology groups of interest

Define the compact support cohomology by
Hq
c (U, · ) = Hq(X , j! · ), where j! is the extension-by-zero functor.

For r ≥ 0, let Z/pnZ(r) be the Bloch cycle complex mod pn on U
in the étale topology. For r < 0, let Z/pnZ(r) be the
extension-by-zero of the usual Tate twist along
U ∩ SpecA[1/p] ↪→ U.

Then:

H1(U,Z/pnZ) classifies abelian p-coverings of U.
We have an exact sequence

0→ Pic(U)/pn Pic(U)→ H2(U,Z/pnZ(1))→ Br(U)[pn]→ 0.

The group H3
c (U,Z/pnZ(2)) is the K2-idèle class group mod

pn of U if F = F (will see this later).

Now we will put Hq(U,Z/pnZ(r)) and Hq
c (U,Z/pnZ(r)) algebraic

structures over F and state a duality between them.
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3.1. Main results: algebraic structures

Let A be the completed unramified extension of A and set
U = U ×A A.

Theorem (S.)

There exist canonical objects Hq(U,Z/pnZ(r)) and
Hq

c (U,Z/pnZ(r)) of WF such that

Hq(U,Z/pnZ(r))(F ) ∼= Hq(U,Z/pnZ(r)),

Hq
c (U,Z/pnZ(r))(F ) ∼= Hq

c (U,Z/pnZ(r))

as Gal(F/F )-modules. These objects are zero unless 0 ≤ q ≤ 3.
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3.2. Main results: duality

Theorem (S.)

There exist a Serre duality

Hq(U,Z/pnZ(r))0 ↔ H4−q
c (U,Z/pnZ(2− r))0

of connected groups in WF and a Pontryagin duality

π0(Hq(U,Z/pnZ(r)))↔ π0(H3−q
c (U,Z/pnZ(2− r)))

of finite étale groups over F .
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3.3. Main results: finiteness

We will take a closer look into each cohomology object.

Theorem (S.)

The group H1(X ,Z/pnZ) is finite if F = F . In particular, the
object H1(X,Z/pnZ) is finite étale (for any F ).

In SGA 2, Grothendieck conjectures that π1(X ) is topologically
finitely generated. The above gives a weaker result.
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3.3. Main results: finiteness

With the Serre duality

H3(X,Z/pnZ(2))0 ↔ H1(X,Z/pnZ)0

and the Pontryagin duality

π0(H3(X,Z/pnZ(2)))↔ π0(H0(X,Z/pnZ)) (∼= Z/pnZ),

we have

Corollary

H3(X,Z/pnZ(2)) ∼= Z/pnZ.
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3.3. Main results: finiteness

By Levine, the K2-idèle class group of X is isomorphic to the
Grothendieck group K0(CA) of the category of A-modules of finite
length and finite projective dimension. The “length” map
K0(CA)→ Z is surjective if F = F by Levine. The previous
corollary is equivalent to the following:

Corollary

The kernel of K0(CA) � Z is p-divisible if F = F .

When A has equal characteristic, this divisibility is an unpublished
result of Srinivas.
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3.4. Main results: class field theory

The Pontryagin duality

H1(X,Z/pnZ)↔ π0(H2(X,Z/pnZ(2)))

gives unramified class field theory for A.

The Serre duality

H1(U,Z/pnZ)0 ↔ H3
c(U,Z/pnZ(2))0

says that the abelian coverings of U “deformable to the trivial
covering” are classified by isogenies onto the K2-idèle class group
of U.
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3.5. Main results: Hasse principles

Assume F = F for simplicity. Let H1
cs(X ,Z/pnZ) ⊂ H1(X ,Z/pnZ)

be the subgroup consisting of coverings completely split at all
p ∈ P. Set

π0(H2(K,Z/pnZ(2))) := lim−→
U⊂X

π0(H2(U,Z/pnZ(2))).

For any p ∈ P, the tame symbol K2(K )→ κ(p)× to the residue
field at p followed by the valuation κ(p)× � Z defines a morphism

π0(H2(K,Z/pnZ(2)))→ Z/pnZ.

Let Y be the reduced part of the exceptional divisor of a resolution
of singularities of A. Assume that Y is a strict normal crossing
divisor. Let Y1, . . . ,Ym be the irreducible components of Y . Let Γ
be the dual graph of Y .
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3.5. Main results: Hasse principles

(Still assuming F = F )

Theorem (S.)

The sequence

π0(H2(K,Z/pnZ(2)))→
⊕
p∈P

Z/pnZ sum→ Z/pnZ→ 0 (1)

is exact.

The kernel of the first map in (1) is Pontryagin dual to the
group

H1
cs(X ,Z/pnZ) ∼= H1(Y ,Z/pnZ).

We have an exact sequence

0→ H1(Γ,Z/pnZ)→ H1(Y ,Z/pnZ)→
⊕
i

H1(Yi ,Z/pnZ)→ 0.
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3.6. Main results: Picard-Brauer duality

(Now, no need to assume F = F )
Lipman defines a natural algebraic group structure (over F ) on
Pic(X ) (= the divisor class group of A). Let PicX be the perfection
of this algebraic structure with identity component Pic0X .

The group Pic0X surjects onto Pic0Y /F (which is a semi-abelian
variety), and the kernel of this surjection has a filtration with
graded pieces given by some coherent cohomology of Y (which is a
vector group).

Let Pic0X ,sAb ⊂ Pic0X be the semi-abelian part and set

Pic0X/sAb = Pic0X/Pic0X ,sAb.
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3.6. Main results: Picard-Brauer duality

Define
BrX [p∞] := lim−→

n

H2(X,Z/pnZ(1)).

Theorem (S.)

The group of F -points of BrX [p∞] is Br(X )[p∞].

We have BrX [p∞]0 ∈ Algu/F . The group π0(BrX [p∞]) is
cofinite (its part killed by p is finite étale).

We have a Serre duality

Pic0X/sAb↔ BrX [p∞]0

of connected groups in Algu/F and a Pontryagin duality

TpPic0X ,sAb ↔ π0(BrX [p∞]),

where Tp denotes the p-adic Tate module.
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4. Philosophical picture

A finitely generated module M over W (F ) naturally defines a
perfect group scheme over F by M = M ⊗W (F ) W . The object
Zp(r) over X should be identified with the mapping fiber of a
divided Frobenius minus one on some prismatic cohomology. The
prismatic cohomology should be a module over a big ring
containing W (F ). Therefore, even if the divided Frobenius minus
one is not linear over W (F ), it should at least be a morphism of
group schemes over F , giving a group scheme structure on
Hq(X ,Zp(r)). That should agree with our algebraic structure
Hq(X,Z/pnZ(r)). Some duality for prismatic cohomology should
induce a duality for Zp(r)-cohomology, which should agree with
our duality results.

I do not know how much of this picture is actually realizable (note
that A is not necessarily complete intersection). What I take is a
more direct and traditional approach.
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5.1. Ideas of proof: starting point

Key point of Saito’s proof for finite F :

For a “nice enough” regular A, the groups K1(A[1/p]) and
K2(A[1/p]) mod p have filtrations by symbols with graded pieces
given by differential forms. On these graded pieces, the duality
pairing is given by

F [[t]]× (Ω1
F ((t))/Ω1

F [[t]])
residue−→ F

TrF/Fp→ Z/pZ

and similar pairings with F [[t]]/F [[t]]p or F [[t]]×/F [[t]]×p.

For general F :

Replace F [[t]] by the pro-algebraic group
∏

n≥0 Gat
n and

Ω1
F ((t))/Ω1

F [[t]] by the ind-algebraic group
⊕

n≥1 Gat
−ndt.

Replace TrF/Fp
by the morphism Ga → Z/pZ[1] in a derived

category coming from the Artin-Schreier sequence
0→ Z/pZ→ Ga → Ga → 0.
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5.1. Ideas of proof: starting point

For the whole groups (not just graded pieces) and bad A, it is not
possible to just replace the groups “by hand”. We need to work
more functorially as follows.

For a perfect field extension F ′/F (possibly transcendental), define
the “base change of A to F ′” by

A(F ′) = lim←−
n

(W (F ′)⊗W (F ) A/m
n),

where m is the maximal ideal of A. The ring A(F ′) is the same
kind of object as A, except that the residue field is now F ′.
Treating A(F ′) in place of A, everything becomes a functor in F ′.
The group F [[t]] in the previous page becomes the functor
F ′ 7→ F ′[[t]].
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5.2. Functors in perfect field extensions

Do abelian groups functorially assigned to perfect field extensions
F ′/F uniquely pin down an object of WF ? Yes!

A perfect artinian F -algebra is a finite product F1 × · · · × Fm,
where each Fi is a perfect field extension of F . Note that an étale
algebra over an perfect artinian F -algebra is again perfect artinian.

Definition

Define the perfect artinian étale site SpecF perar
et to be the category

of perfect artinian F -algebras endowed with the étale topology.

Let Ab(F perar
et ) be the category of sheaves of abelian groups on

SpecF perar
et .

Theorem

The natural Yoneda functor WF → Ab(F perar
et ) is fully faithful.
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5.3. Cohomology as functors

Let U ⊂ X be a dense open subscheme. For a perfect artinian
F -algebra F ′, set

U(F ′) = U ×SpecA Spec A(F ′).

Now we define

Hq(U,Z/pnZ(r)),Hq
c (U,Z/pnZ(r)) ∈ Ab(F perar

et )

to be the étale sheafifications of the presheaves

F ′ 7→ Hq(U(F ′),Z/pnZ(r)),

F ′ 7→ Hq
c (U(F ′),Z/pnZ(r)),

respectively. There are derived categorical versions:

RΓ(U,Z/pnZ(r)),RΓc(U,Z/pnZ(r)) ∈ D(F perar
et ),

whose q-th cohomology objects are Hq(U,Z/pnZ(r)),
Hq

c (U,Z/pnZ(r)), respectively.
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5.4. Definition of the duality pairing

We define the duality pairing as follows:

We have a long exact sequence

· · · → Hq(X ,Z/pnZ(2))→ Hq(K ,Z/pnZ(2))→
⊕
p∈P

Hq−1(κ(p),Z/pnZ(1))→ · · · .

If F = F , then K has cohomological dimension 2 by Kato and κ(p)
has cohomological dimension 1 by Lang. Hence
Hq(X ,Z/pnZ(2)) = 0 for q ≥ 4 and we have an exact sequence

K2(K )/pnK2(K )→
⊕
p∈P

κ(p)×/κ(p)×p
n → H3(X ,Z/pnZ(2))→ 0.

The sum of the valuation maps on κ(p)× is zero on K2(K ) by the
Quillen spectral sequence for A.
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5.4. Definition of the duality pairing

Therefore we have a map

H3(X ,Z/pnZ(2))→ Z/pnZ

if F = F . Hence for a general F and any algebraically closed F ′/F ,
we have a map

H3(X(F ′),Z/pnZ(2))→ Z/pnZ

functorially in F ′. This defines a morphism

H3(X,Z/pnZ(2))→ Z/pnZ ↪→ Qp/Zp

in Ab(F perar
et ) and hence a morphism

RΓ(X,Z/pnZ(2))→ Qp/Zp[−3]

in D(F perar
et ), which is the trace morphism in this setting.
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5.4. Definition of the duality pairing

With the cup product, we have morphisms

RΓ(U,Z/pnZ(r))⊗L RΓc(U,Z/pnZ(2− r))

→ RΓc(U,Z/pnZ(2))

→ RΓ(X,Z/pnZ(2))

→ Qp/Zp[−3].

The composite

RΓ(U,Z/pnZ(r))⊗L RΓc(U,Z/pnZ(2− r))→ Qp/Zp[−3]

is our duality pairing.
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5.5. Duality theorem in sheaf form

For objects C ,D,E ∈ D(F perar
et ), a morphism C ⊗L D → E is said

to be a perfect pairing if the induced morphisms

C → R HomFperar
et

(D,E ) and D → R HomFperar
et

(C ,E )

are isomorphisms, where HomFperar
et

denotes the sheaf-Hom functor

for SpecF perar
et .

Theorem

The morphism

RΓ(U,Z/pnZ(r))⊗L RΓc(U,Z/pnZ(2− r))→ Qp/Zp[−3]

is a perfect pairing.
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5.6. Proof sketch

Consider the following 3 statements:

1. this duality for RΓ,RΓc

2. the statement Hq,Hq
c ∈ WF

3. the duality for each Hq,Hq
c ∈ WF (for π0 and ( · )0)

Then (1) + (2) =⇒ (3).

To prove (1) and (2), the case where A is “nice enough” regular
can be treated more or less by the same method as Saito’s (by
filtrations by symbols).
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5.6. Proof sketch

To reduce the general case to the “nice enough” case, take a
resolution of singularities X→ SpecA such that X×A A/pA ⊂ X is
supported on a strict normal crossing divisor. Consider the
inclusions

X
j
↪→ X

i←↩ Y ,

where Y is the reduced part of the exceptional divisor. Using
proper base change, write

RΓ(X,Z/pnZ(r)) ∼= RΓ(Y,RΨZ/pnZ(r)),

where RΨ = i∗Rj∗ is the (p-adic) nearby cycle functor. Deal with
the singularities of Y using the “nice enough” case, and then
(essentially) give a duality for RΨZ/pnZ(r) and combine it with a
p-adic duality theory for Y .
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5.7. Finiteness of H1(X ,Z/pnZ)

(F = F ) We may assume n = 1 and A contains a primitive p-th
root of unity. Again, consider

X
j
↪→ X

i←↩ Y .

We have an exact sequence

0→ H1(Y ,Z/pZ)→ H1(X ,Z/pZ)→ Γ(Y ,R1ΨZ/pZ)→ 0.

The term H1(Y ,Z/pZ) is finite. By Kummer theory, we may pass
to (some part of) Γ(Y ,R1ΨZ/pZ(1)). The sheaf R1ΨZ/pZ(1)
has a filtration by symbols with graded pieces given by coherent
sheaves on Y . The negative-definiteness of the intersection pairing
on X gives some bound on the coherent cohomology. By some
analysis of the Frobenius-fixed points of the coherent cohomology,
we get the result.
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5.8. Hasse principles

(F = F ) Let U ( X be dense open. The long exact sequence for
compact support cohomology gives an exact sequence

0→Z/pnZ→
⊕

p∈X\U

Z/pnZ→ H1
c(U,Z/pnZ)

→H1(X,Z/pnZ)→
⊕

p∈X\U

H1(κ(p),Z/pnZ).

Taking the inverse limit in shrinking U, we get an exact sequence

0→ Z/pnZ→
∏
p∈P

Z/pnZ→ lim←−
U

H1
c(U,Z/pnZ)→ H1

cs(X,Z/pnZ)→ 0.

Taking the Pontryagin dual (noting that H1
cs(X,Z/pnZ) is finite)

and using our duality theorem, we get the desired exact sequence

0→ H1
cs(X,Z/pnZ)∗ → π0(H3(K,Z/pnZ(2)))→

⊕
p∈P

Z/pnZ→ Z/pnZ→ 0

(where ∗ denotes the Pontryagin dual).
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