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Profinite groups and pro-p groups
Henceforth we fix an arbitrary prime p (it could be p = 2 with
further conditions...)

A profinite group G is a topological group which is, equivalently, ...

� compact, Hausdorff, s.t. 1 has a basis of open
neighbourhoods N consisting of normal subgroups;

� the projective limit of finite groups, i.e., G = lim←−i∈I Gi , with

|Gi | < ∞
A pro-p group is a profinite group G which is a projective limit of
finite p groups, or, equivalently, G/N is a finite p group for every
N ∈ N .

EXAMPLES

� Zp = {a0 + a1p + a2p
2 + . . . | an ∈ Z/p} = lim←−n≥1

Z/pn is

an additive free cyclic pro-p group

� 1 + pZp = {1 + pλ | λ ∈ Zp} ⊆ Z×
p is a multiplicative free

cyclic pro-p group



Galois groups and profinite groups

Galois groups are profinite groups:

Gal(L/K) = lim←−
[K̃:K]<∞

Gal(L/K̃).

Conversely, every profinite group occurs as Gal(L/K) for some field
extension L/K, but...

BIG QUESTION(S)

� Which profinite group G occur as the absolute Galois group
GK = Gal(K̄s/K) for some field K?

� Whic pro-p group occurs as the maximal pro-p Galois group
GK(p) = Gal(K(p)/K) for some field K containing p

√
1?

Note: if G is pro-p and G �� GK(p) for any field containing p
√
1,

then G �� GK� for any field K�.



Orientations of pro-p groups

Definition
An oriented pro-p group (G , θ) is a pro-p group G equipped with a
homomorphism of pro-p groups θ : G → 1 + pZp called an
orientation of G .
The G -module Zp(θ) is defined by Zp(θ) = { v | v ∈ Zp },
g .v = θ(g) · v
Oriented pro-p groups were introduced by I. Efrat 25 years ago
with the name “pro-p pairs”.

EXAMPLES

� The p-cyclotomic character θK : GK(p) → 1 + pZp satisfies
g .ζ = ζθK(g) for every ζ ∈ K̄s root of 1 of p-power order

� A Demuškin group G yields a canonical orientation
θG : G → 1 + pZp (if G = GK(p) with K local then θG = θK)



Pro-p groups of elementary type

We can combine together oriented pro-p groups:



The Elementary Type Conjecture

The smallest family of oriented pro-p group which can be obtained
starting from ({1}, 1), all (Zp, θ) (with θ arbitrary), and from
Demuškin pro-p groups, employing these two operations, are called
pro-p groups of elementary type.

Conjecture (I. Efrat, ’97)

Let K be a field containing p
√
1. If GK(p) is finitely generated, then

(GK(p), θK) is of elementary type.

This conjecture is open, and also we don’t know whether any
oriented pro-p group (in fact, any Demuškin group) occurs as
(GK(p), θK). Still:

� If a property is suspected to hold for all GK(p)’s, then prove it
for oriented pro-p groups of E.T. first!

� Few concrete examples of pro-p groups which are not GK(p)’s
are known: find them among non-E.T. oriented pro-p groups.



Z/p-cohomology of pro-p groups

Consider Z/p as a trivial mod. of a pro-p group G : we write
Hk(G ) := Hk(G ,Z/p).

� H0(G ) = Z/p

� H1(G ) = Hom(G ,Z/p) = (G/Φ(G ))∗ (Z/p-dual)

� if {1} → R → F → G → {1} is a minimal presentation of G
then H1(G ) � H1(F ) and

�
R

Rp[R ,F ]

�∗
∼−→ H2(G )

so a basis of H2(G ) “gives” a minimal set of defining relations
of G (modulo Rp[R ,F ])



Nets for fishing GK(p)’s

After the proof of the Norm Residue Theorem, we have three
“cohomological nets” for fishing GK(p)’s among pro-p groups:

(1) A pro-p group G has the Bloch-Kato property of deg 2 if

H1(G )× H1(G )
� �� �� H2(G )

(2) An oriented pro-p group (G , θ) is 1-cyclotomic if the natural
map

H1(G ,Zp(θ))
mod p �� H1(G )

is surjective (note: G acts trivially on Zp(θ)/p)

Both properties may be translated into group-theoretical terms. By
the Norm Residue Theorem, GK(p)’s satisfy both properties.



Nets for fishing GK(p)’s

(3) A pro-p group G has the n-Massey vanishing property for
n ≥ 3 if the n-fold Massey product

�α1, . . . ,αn� ⊆ H2(G )

associated to an n-tuple of elements of H1(G ) contains 0
whwnwver it is non-empty

GK(p)’s have the 3-MV property, and also the n-MV property for
all n ≥ 3 in some cases (number fields, local fields...), as well as
oriented pro-p groups of E.T. It is conjectured that all GK(p)’s
have the n-MV property for every n ≥ 3.



Oriented graphs
My definition of oriented graph Γ: a finite set of vertices, some of
which are joined by an arrow or by a plain edge — no loops
allowed!

An oriented graph is special if every attracting vertex is a “black
hole”.

.



Oriented right-angled Artin pro-p groups

Given an oriented graph Γ, pick your favourite p-power pf ,
f ∈ N ∪ {∞}. The oriented right-angled Artin pro-p group
associated to Γ and pf is the pro-p group G with pro-p
presentation

G =

�
vertices v | [v ,w ] = 1 if v − w

vwv−1 = w1+pf if w → v

�

with orientation θΓ : G → 1 + pZp defined by

θΓ(v) =

�
1 + pf if v attracting

1 if v normal

This is a very rich family of pro-p groups, so it is interesting from a
Galois-theoretic point of view.



Graphs of elementary type



Graphs of elementary type

An oriented graph Γ is of E.T. if, and only if, Γ is special and it
contains no induced subgraphs like

EXAMPLES:

.



Main Theorem

THM (Blumer-Weigel-Q)

Let Γ be an oriented graph, pick pf , an let G be the associated
oriented pro-p RAAG. TFAE:

(i) Γ is of E.T.

(ii) G is of E.T.

(iii) G has the BK prop. of deg. 2

(iv) G is 1-cyclotomic

(v) G � GK(p) for some K containing p
√
1 (in fact pf

√
1)

This result...

� extends a recent result of Snopce-Zalesskĭı (the same
statement but without “oriented”).

� provides a very large class of pro-p groups where the E.T.
conjecture is verified

� provides a big wealth of concrete examples of pro-p groups
(with a rather easy structure) which are not absolute Galois



Bad graphs 1



Bad graphs 2



Bad graphs 3



Oriented pro-p RAAGs and Massey products

On the other hand, also some bad oriented pro-p RAAGs have the
n-Massey Vanishing property:

If Γ is a special oriented graph, then the oriented pro-p RAAG
associated to Γ and any pf has the n-M.V. property for every
n ≥ 3.

To prove this we use the following group theoretic characterization:
a pro-p group G has the n-M.V. property if, and only if, ...

G

ρ̄

��

ρ

��
{1} �� Z(UTn(Z/p)) �� UTn(Z/p) �� UTn(Z/p)

Z(UTn(Z/p))
�� {1}



Relations between nets
How are the 3 cohomological properties related?

.
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Last slide
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