The Brauer-Manin obstruction for curves over global function fields

Brendan Creutz

Seminar on Arithmetic Geometry and Algebraic Groups (Online) 8 November 2023

- k is a global field, i.e., a number field or the function field of a curve over a finite field.
- X is a nice variety over a global field k.
- We are interested in the set X(k) of k-rational points of X and how it sits inside the set X(A_k)_● = ∏_{v∈Ω_k} X(k_v) of adelic points (modified at archimedean places).
- Techniques such as descent or Brauer-Manin obstruction cut out intermediate sets

$$X(k) \subset \overline{X(k)} \subset X(\mathbb{A}_k)^{obstruction}_{ullet} \subset X(\mathbb{A}_k)_{ullet}$$

What is known for curves?

Conjecture [Scharaschkin, Skorobogatov, Poonen, Stoll]

Let X/k be a nice curve over a global field k. Then

$$\overline{X(k)} = X(\mathbb{A}_k)^{\mathsf{Br}}_{ullet}$$
.

- ► Known for curves with Jac(X)(k) finite and III(Jac(X)/k)_{div} = 0.
- Verified in many numerical examples with $X(\mathbb{A}_k)^{Br} = \emptyset$.
- X(A_k)^{Br} = ∅ for most hyperelliptic curves (Bhargava-Gross-Wang).
- ▶ No examples over number fields with genus ≥ 2 and $X(k) \neq \emptyset$ for which we can prove $X(\mathbb{A}_k)^{Br}_{\bullet} = X(k)$

What is known in the function field case?

In the function field case, i.e., when k = 𝔽_q(D) for a curve D/𝔽_q much more is known.

Theorem (C.-Voloch 2023)

If X/k is a nonisotrivial curve over a global function field of genus ≥ 2 , then $X(k) = X(\mathbb{A}_k)^{Br}$.

- Builds on work of Poonen-Voloch (2010) which proves the theorem for X such that
 - Jac(X) has no nonistrovial isogeny factor, and
 - $Jac(X)(k^s)[p^{\infty}]$ is finite.
- Other key inputs from Rössler (2013) (concerning J(k^s)[p[∞]]) and Abramovich-Voloch (1992) concerning Mordell-Lang over function fields.

Definition

Suppose $F \subset k$ is a subfield. We say X can be defined over F if there exists X_0/F such that $X \simeq X_0 \times_F k$.

Definition

Suppose $k = \mathbb{F}(D)$ is the function field of a curve *D*.

- X/k is **constant** if X can be defined over \mathbb{F} .
- ► X/k is isotrivial if there is some L/k such that X ×_k L is constant.

Example: Suppose $f(x) \in \mathbb{F}[x]$ is separable, then

- ► $y^2 = f(x)$ defines a constant curve over $k = \mathbb{F}(t)$.
- ► $ty^2 = f(x)$ defines an isotrivial curve over $k = \mathbb{F}(t)$.

Fields of definition

From now on $k = \mathbb{F}(D)$ with \mathbb{F} a finite field of characteristic p. There are purely inseparable subfields

$$k \supset k^p \supset k^{p^2} \supset \cdots \supset k^{p^n} \supset \cdots$$

with $\bigcap_{n>1} k^{p^n} = \mathbb{F}$.

Lemma 1

X/k is isotrivial if and only if it can be defined over k^{p^n} for all n.

Example: $ty^2 = f(x)$ is isomorphic to $t^{p^n}y^2 = f(x)$

Lemma 2 [Szpiro, Voloch, Abramovich-Voloch]

Suppose X is a curve of genus ≥ 2 and $Y \rightarrow X$ is a torsor under a finite abelian group whose connected component is defined over k^{p^n} . If Y can be defined over k^{p^n} , then so can X.

There is a morphism

$$F: X \to X^{(p)}$$

called the absolute **Frobenius** given by raising coordinates to the *p*-th power; defining equations for $X^{(p)}$ are obtained from those of *X* by raising coefficients to the *p*-th power. Note that if *X* is defined over *k*, then $X^{(p)}$ is defined over k^p .

If A/k is an abelian variety, $F : A \to A^{(p)}$ is an isogeny of degree $p^{\dim(A)}$ and there is a complimentary isogeny, called **Verschiebung** $V : A^{(p)} \to A$ such that $V \circ F = [p]$.

Zariski dense adelic points and descent

Let $(x_v) \in X(\mathbb{A}_k) = \prod X(k_v)$ be an adelic point.

Definition

We say (x_v) is **Zariski dense** if for any closed subvariety $Z \subsetneq X$ there exists some v such that $x_v \notin Z(k_v)$.

Suppose $X \subset A$ is a curve embedded abelian variety. Multiplication by *n* on *A* pulls back to give a A[n]-torsor $X' \to X$.

Defintion

We say (x_v) survives *n*-descent (with resepcet to $X \subset A$) if (x_v) lifts to a twist of $X' \to X$ by an element in $H^1(k, A[n])$.

Remark: If *X* is a curve and $(x_v) \in X(\mathbb{A}_k)^{B^r}$, then *X* survives *n*-descent for all *n* with respect to all possible *A*.

Proposition [C.-Voloch]

Suppose $X \subset A$ is a curve contained in an abelian variety and $(x_v) \in X(\mathbb{A}_k)$ is a Zariski dense adelic point which survives p^n -descent for all *n*. Then *X* is isotrivial.

Sketch: Let $(x'_{\nu}) \in X'(\mathbb{A}_k)$ be a lift of (x_{ν}) to a p^n -covering

$$\begin{array}{c} X' \longrightarrow Y \longrightarrow X \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ A \xrightarrow{F^n} A^{(p^n)} \xrightarrow{V^n} A \end{array}$$

- Y ⊂ A^(pⁿ) contains a Zariski dense point with coordinates in k^{pⁿ}, so Y can be defined over k^{pⁿ}.
- Y → X is a torsor under A^(p)[Vⁿ] so X can also be defined over k^{pⁿ} by Lemma 2.
- Conclude that X is isotrivial by Lemma 1.

Question: Is this also true when $p \neq char(k)$?

Brauer-Manin for zero-dimensional subschemes of abelian varieties

Theorem

Suppose $Z \subset A$ is a zero-dimensional subscheme of an abelian variety over a global field. Then $Z(\mathbb{A}_k)_{\bullet} \cap A(\mathbb{A}_k)_{\bullet}^{\mathsf{Br}} = Z(k)$.

- Proved over number fields by Stoll (2006).
- ► Proved over global function fields assuming A(k^s)[p[∞]] is finite by Poonen-Voloch (2010).
- ► We remove the assumptions on A(k^s)[p[∞]] using work of Rössler (2013).

Proof of the main theorem

Theorem (C.-Voloch 2023)

If X/k is a nonisotrivial curve over a global function field of genus ≥ 2 , then $X(k) = X(\mathbb{A}_k)^{Br}$.

• Suppose
$$(x_v) \in X(\mathbb{A}_k)^{Br}$$
.

- Then (x_v) ∈ Z(A_k) for some finite subscheme Z ⊂ X by the proposition.
- But Z(A_k) ∩ X(A_k)^{Br} = Z(k) by previous theorem, so (x_v) is k-rational.

What about the isotrivial case?

X(k) can be infinite and contain Zariski dense points.

Example

Consider $k = \mathbb{F}_{p}(D)$ and $X = D \times_{\mathbb{F}_{p}} k$.

- X(k) = Mor_{𝔽q}(D, D) contains the identity map which is not contained in any proper closed subvariety of D.
- X(k) also contains the Frobenius morphisms Fⁿ: D → D which are all distinct.
- It is still conjectured that X(k) = X(A_k)^{Br}, but one must take the topological closure in X(A_k).
- This conjecture can be reduced to the constant case (joint work in progress with Pajwani), but the constant case is still open in genus > 1.

The constant case

Theorem (C.-Voloch)

Suppose X is a constant curve over $\mathbb{F}_q(D)$.

- If g(D) < g(X), then $X(\mathbb{A}_k)^{\mathrm{Br}} = X(k) = X(\mathbb{F}_q)$.
- ► If Jac(X) is not an isogeny factor of Jac(D), then $X(\mathbb{A}_k)^{\text{et}-\text{Br}} = X(k) = X(\mathbb{F}_q).$
- ► $X(\mathbb{A}_k)^{\text{et}-\text{Br}} \neq X(\mathbb{F}_q)$ iff exists $\pi_1^{\text{et}}(D) \rightarrow \pi_1^{\text{et}}(X)$ satisfying certain conditions.

Remark: The Brauer group contains inseparable abelian descent information. The etale descent contains nonabelian descent information.

Summary

Conjecture [Scharaschkin, Skorobogatov, Poonen, Stoll]

Let X/k be a nice curve over a global field k. Then

$$\overline{X(k)} = X(\mathbb{A}_k)^{\mathsf{Br}}$$

When k is a number field there are numerical examples with X(k) = ∅, but few general results.

When k is a function field it is

- known for all nonisotrivial curves with $g \ge 2$,
- open for isotrivial curves with $g \ge 2$,
- Some general results in cases with X(k) = X(𝔅), but none with X(k) ≠ X(𝔅).