GALOIS COHOMOLOGY OF REDUCTIVE GROUPS OVER GLOBAL FIELDS

Mikhail Borovoi (Tel Aviv University)

Seminar on Algebraic Geometry and Algebraic Groups March 15, 2023

Based on a joint work with Tasho Kaletha

Thank you for inviting me to give a talk in this seminar.

Let F be a field,

 \overline{F} be a fixed algebraic closure of F,

 $F^s \subseteq \overline{F}$ be the separable closure of F in \overline{F} .

If char(F) = 0, then $F^s = \overline{F}$.

Let $\Gamma_F = \operatorname{Gal}(F^s/F)$, the absolute Galois group of F. Then $(F^s)^{\Gamma_F} = F$.

Let G be a linear algebraic group over F. We may regard G as $G \subseteq \operatorname{GL}_n(\overline{F})$ defined by polynomials with coefficients in F.

We denote by $G(F^s) \subseteq \operatorname{GL}_n(F^s)$ and $G(F) \subseteq \operatorname{GL}_n(F)$ the corresponding groups of points. Then Γ_F acts of $G(F^s)$ via the action on the matrix entries

$$(\gamma,g)\mapsto {}^{\gamma}\!g \quad \text{ for } \gamma\in \Gamma_F, \ g\in G(F^s).$$

We have

$$G(F^s)^{\Gamma_F} = G(F).$$

Galois cohomology

 $Z^1(F,G)$ is the set of locally constant maps $c\colon \Gamma_F\to G(F^s)$ satisfying the cocycle condition

 $c(\gamma\delta) = c(\gamma) \cdot {}^{\gamma}\!c(\delta) \quad \text{for all } \gamma, \delta \in \Gamma_F.$

The group $G(F^s)$ acts on $Z^1(F,G)$ on the right by *twisted conjugation*

 $(c*g)(\gamma) = g^{-1} \cdot c(\gamma) \cdot {}^{\gamma}g \quad \text{for } c \in Z^1(F,G), \ g \in G(F^s), \ \gamma \in \Gamma_F.$

By definition,

 $H^{1}(F,G) = Z^{1}(F,G)/G(F^{s}).$

A priori $H^1(F,G)$ is just a pointed set (not a group), with a distinguished point 1, the class of the cocycle 1.

If G is commutative, then $H^1(F,G)$ is naturally an abelian group, and one can define abelian groups $H^i(F,G)$ for all $i \ge 0$.

Example

Assume that G is a constant finite F-group, that is, the group $G(F^s)$ is finite and Γ_F acts on $G(F^s)$ trivially; in other words, $G(F^s) = G(F)$. Then

$$Z^1(F,G) = \operatorname{Hom}(\Gamma_F,G(F^s))$$

and

$$H^1(F,G) = \operatorname{Hom}(\Gamma_F, G(F^s))/\operatorname{conjugation}.$$

For general G, the definition of $H^1(F,G)$ it not intuitive, and we cannot compute the Galois cohomology directly from the definition, in particular because we do not know the Galois group Γ_F .

Applications of Galois cohomology

Let X be a *quasi-projective* algebraic variety with additional structure, defined over F (for example, an algebraic F-group or a homogeneous space). Assume that $G = \operatorname{Aut}(X)$. We wish to classify the twisted F^s/F -forms of X, that is, the isomorphism classes of F-varieties with similar structure X' such that

 $X' \times_F F^s \simeq X \times_F F^s.$ They are classified by $H^1(F,G)$.

Similarly, let V be a finite dimensional vector space over F, and let $t\in (V^*)^{\otimes m}\otimes V^{\otimes n}$

be a tensor (for example, a bilinear form or a structure of Lie algebra). Write

 $G = \operatorname{Stab}(t) \in \operatorname{GL}(V).$

Then the twisted forms of the pair (V,t) are classified by $H^1(F,G)$.

We see that in all classification problems over a nonclosed field in algebraic geometry and linear algebra, one needs Galois cohomology.

Global and local fields

The theory of Galois cohomology $H^1(F,G)$ does depend on the field F. For example, when $F = \mathbb{F}_q$ is a *finite field*, we have $H^1(F,G) = 1$ for all *connected* groups G (Lang's theorem).

I will discuss $H^1(F,G)$ in the case when F is a *local field* or a *global field*.

A global field of characteristic 0 is a number field: a finite extension of the field of rational numbers \mathbb{Q} .

A global field F of characteristic p > 0 is a global function field: the field of rational functions on an algebraic curve over a finite field \mathbb{F}_q of cardinality $q = p^l$ for some natural l. In other words, F is a finite extension of the field $\mathbb{F}_q(x)$ of rational functions in one variable over a finite field \mathbb{F}_q .

We consider *places* v of our global field F, that is, absolute values up to equivalence. Then F_v denotes the completion of F with respect to v. These completions are called *local fields*.

Algebraic fundamental group of a reductive group

Let G be a connected reductive algebraic group over a field F. **Example.** $G = GO_{n,F} = \{g \in GL(n,\overline{F}) \mid g \cdot g^T = \lambda I_n, \lambda \in \overline{F}^{\times}\}.$ Let G^{sc} be the universal cover of the commutator subgroup [G,G] of G. In our example, $[G,G] = SO_{n,F}$ and $G^{sc} = Spin_{n,F}$. Consider

$$\rho \colon G^{\mathrm{sc}} \twoheadrightarrow [G, G] \hookrightarrow G.$$

Let $T \subseteq G$ be a maximal torus. Set $T^{\mathrm{sc}} = \rho^{-1}(T) \subseteq G^{\mathrm{sc}}$ and consider

$$\rho \colon T^{\mathrm{sc}} \to T, \qquad \rho_* \colon \mathsf{X}_*(T^{\mathrm{sc}}) \to \mathsf{X}_*(T),$$

where $X_*(T) = \text{Hom}(\mathbf{G}_{m,\overline{F}}, T_{\overline{F}})$ denotes the cocharacter group of T. We set $\pi_1(G) = X_*(T)/\rho_*X_*(T^{sc}).$

The Galois group Γ_F naturally acts on $\pi_1(G)$, and the obtained Γ_F -module does not depend on the choice of T.

In characteristic 0, our algebraic fundamental group $\pi_1(G)$ of B.98 can be non-formally regarded as the topological fundamental group $\pi_1^{\text{top}}(G(\mathbb{C}))$ defined algebraically.

Algebraic fundamental group (cont.)

Examples.

- G is a simply connected semisimple group, say, SL_n . Then $\pi_1(G) = 0$.
- $G = PGL_n = SL_n/\mu_n$. Then $\pi_1(G) = \mathbb{Z}/n\mathbb{Z}$, whereas $\pi^{\text{\'et}}(G) = \mu_n$.
- $G = \mathbf{G}_{m,F}$. Then $\pi_1(G) = \mathbb{Z}$, whereas $\pi^{\text{\'et}}(G) = \varprojlim \mu_n = \widehat{\mathbb{Z}}(1)$.
- E/F a separable quadratic extension with Galois group $\Gamma_{E/F} = \{1, \gamma\}$ of order 2. Consider the 1-dimensional torus

$$G = R_{E/F}^{1} \mathbf{G}_{m} \coloneqq \ker \left[N_{E/F} \colon R_{E/F} \mathbf{G}_{m} \to \mathbf{G}_{m,F} \right]$$

with the group of F-points $\ker[E^{\times} \to F^{\times}]$. Then $\pi_1(G) \simeq \mathbb{Z}$ (because G is a 1-dimensional torus), $\gamma \in \Gamma_{E/F}$ acts on $\pi_1(G) \simeq \mathbb{Z}$ by multiplication by -1, and Γ_F acts on $\pi_1(G)$ via $\Gamma_{E/F}$.

The abelianization map

Consider the complex of tori $T_{-1}^{\text{sc}} \xrightarrow{\rho} T_{0}$ in degrees -1 and 0. We define (using cocycles) the abelian group

 $H^{1}_{\mathrm{ab}}(F,G) = \mathbb{H}^{1}(F,T^{\mathrm{sc}} \to T) \coloneqq \mathbb{H}^{1}\big(\Gamma_{F},T^{\mathrm{sc}}(F^{s}) \to T(F^{s})\big)$

where the hypercohomology \mathbb{H}^1 is a kind of mixture of $H^1(F,T)$ and $H^2(F,T^{sc})$. Our $H^1_{ab}(F,G)$ depends only on the Γ_F -module $\pi_1(G)$.

Moreover, we define the *abelianization map*

ab: $H^1(F,G) \to H^1_{ab}(F,G),$

which fits into the exact sequence

$$H^1(F, G^{\mathrm{sc}}) \xrightarrow{\rho_*} H^1(F, G) \xrightarrow{\mathrm{ab}} H^1_{\mathrm{ab}}(F, G).$$

For a local or global field F, the map ab is *surjective*.

Abelianization map: construction

I recall the construction of the abelianization map from B.98. We consider the complex of nonabelian groups

$G^{\mathrm{sc}} \to G$

with G^{sc} in degree -1. This complex is a *crossed module:* the group G naturally acts on G^{sc} , and this action is compatible with the actions of G on G and of G^{sc} on G^{sc} by conjugation. Using this structure of a crossed module, the speaker defined in B.98 the first Galois hypercohomology set

 $\mathbb{H}^1(F, G^{\mathrm{sc}} \to G).$

The inclusion

$$(T^{\mathrm{sc}} \to T) \hookrightarrow (G^{\mathrm{sc}} \to G)$$

is a *quasi-isomorphism:* it induces isomorphisms on the kernels and the cokernels. Thus the induced map

$$\mathbb{H}^1(F, T^{\mathrm{sc}} \to T) \to \mathbb{H}^1(F, G^{\mathrm{sc}} \to G)$$

is a bijection.

Abelianization map: construction (cont.)

On the other hand, the inclusion of crossed modules

 $(1 \to G) \hookrightarrow (G^{\mathrm{sc}} \to G)$

induces a natural map

$$H^1(F,G) = \mathbb{H}^1(F,1 \to G) \to \mathbb{H}^1(F,G^{\mathrm{sc}} \to G).$$

We obtain our abelianization map:

 $\mathrm{ab} \colon \, H^1(F,G) \to \mathbb{H}^1(F,G^{\mathrm{sc}} \to G) \, \xrightarrow{\sim} \, \mathbb{H}^1(F,T^{\mathrm{sc}} \to T) \eqqcolon H^1_{\mathrm{ab}}(F,G).$

Cohomology over a non-archimedean local field

Write $M = \pi_1(G)$, and let M_{Γ_F} denote the *group of coinvariants* of Γ_F in M:

$$M_{\Gamma_F} = M / \langle \gamma m - m \mid \gamma \in \Gamma_F, \ m \in M \rangle.$$

Write $M_{\Gamma_F,\text{Tors}} = (M_{\Gamma_F})_{\text{Tors}}$ for the torsion subgroup of M_{Γ_F} .

Theorem (B.98, González-Avilés 12, goes back to Kottwitz 86) *For a* non-archimedean local *field F*, *the map*

ab: $H^1(F,G) \to H^1_{ab}(F,G)$

is bijective, and

 $H^1(F,G) \cong H^1_{\mathrm{ab}}(F,G) \cong M_{\Gamma_F,\mathrm{Tors}}.$

Questions?

Over non-archimedean local fields: Trivial examples

• G is a simply connected semisimple F-group. Then $M := \pi_1(G) = 0$, whence

$H^1(F,G) = M_{\Gamma,\text{Tors}} = 0$

(theorem of Kneser and of Bruhat and Tits). We don't give a new proof of Kneser's theorem; we *use* it.

• $G = \mathbf{G}_{m,F}$, the 1-dimensional split *F*-torus. Then $M = \mathbb{Z}$, Γ_F acts on $M = \mathbb{Z}$ trivially,

 $M_{\Gamma_F} = \mathbb{Z}, \quad M_{\Gamma_F, \text{Tors}} = 0, \quad H^1(F, \mathbf{G}_{\mathrm{m}, F}) = 1$

(well-known: Hilbert's Theorem 90).

A less trivial example

• E/F a separable quadratic extension, $G = R_{E/F}^1 \mathbf{G}_m$ is the 1-dimensional F-torus with

$$G(F) = \ker \left[N_{E/F} \colon E^{\times} \to F^{\times} \right],$$

 $M\simeq \mathbb{Z}$, Γ_F acts on M via $\Gamma\coloneqq \Gamma_{E/F}=\{1,\gamma\}$, where γ acts on $M\simeq \mathbb{Z}$ by $\gamma m=-m$. An easy calculation shows that

 $M_{\Gamma_F, \text{Tors}} = M_{\Gamma_F} \cong \mathbb{Z}/2\mathbb{Z}.$

(indeed, $m - \gamma m = m - (-m) = 2m$). Thus $H^1(F, G) \cong \mathbb{Z}/2\mathbb{Z}$. This result is well-known. Indeed, we have

 $H^1(F,G) = H^1(E/F,G) \cong F^{\times}/N_{E/F}(E^{\times}) \cong \Gamma_{E/F} \cong \mathbb{Z}/2\mathbb{Z}.$

Over global field: what is known?

Let F be a global field, G be a connected reductive group over F, \mathcal{V}_F the set of places of F. For any place $v \in \mathcal{V}_F$ we have the *localization map*

$$\operatorname{loc}_v \colon H^1(F,G) \to H^1(F_v,G).$$

Thus we obtain a map

loc:
$$H^1(F,G) \to \prod_{v \in \mathcal{V}_F} H^1(F_v,G).$$

This map actually takes values in

$$\bigoplus_{v \in \mathcal{V}_F} H^1(F_v, G) \coloneqq \Big\{ (\xi_v) \in \prod_{v \in \mathcal{V}_F} H^1(F_v, G) \ \Big| \ \xi_v = 1 \text{ for almost all } v. \Big\}.$$

What is known (cont.)

There is an exact sequence of Kottwitz 86

$$(\mathsf{K}) \quad 1 \to \operatorname{III}(F,G) \to H^1(F,G) \xrightarrow{\operatorname{loc}} \bigoplus_{v \in \mathcal{V}_F} H^1(F_v,G) \xrightarrow{\Sigma} M_{\Gamma_F,\operatorname{Tors}}$$

where the map Σ is easy to describe. Thus we know the *image* im loc.

On the other hand, the Tate-Shafarevich kernel $\operatorname{III}(F,G) = \ker \operatorname{loc}$ has a canonical structure of a *finite abelian group* (Sansuc 81), and Kottwitz 86 computed this group. It can be computed in terms of $M = \pi_1(G)$ (B.98). This group $\operatorname{III}(F,G)$ acts *simply transitively* on each non-empty fiber of the map loc.

Thus we know all groups and sets in the exact sequence (K), except for $H^1(F,G)$. The novel part of my talk is a *closed formula for* $H^1(F,G)$.

Global field

Let F be a global field, $M = \pi_1(G)$. Let E/F be a *finite* Galois extension in F^s such that $\operatorname{Gal}(F^s/E)$ acts on M trivially. Set $\Gamma = \Gamma_{E/F}$; then Γ acts on M.

Let \mathcal{V}_E denote the set of places of E. The Galois group $\Gamma = \Gamma_{E/F}$ acts on E, and so it naturally acts on \mathcal{V}_E . Consider the surjective map

 $p_{E/F} \colon \mathcal{V}_E \to \mathcal{V}_F, \ w \mapsto w|_F.$

For $v \in \mathcal{V}_F$, set $\mathcal{V}_E(v) = p_{E/F}^{-1}(v) \subset \mathcal{V}_E$. In other words, $\mathcal{V}_E(v)$ is the set of all places (absolute values) w of E extending the place v of F. Then Γ acts on each of the finite sets $\mathcal{V}_E(v)$ transitively, that is, each $\mathcal{V}_E(v)$ is an orbit of Γ . We have

 $\mathcal{V}_E = \bigcup_{v \in \mathcal{V}_F} \mathcal{V}_E(v).$

Cohomology over a global function field

Following Tate 66, we consider the group of *finite* formal linear combinations

$$M[\mathcal{V}_E] = \left\{ \sum_{w \in \mathcal{V}_E} m_w \cdot w \mid m_w \in M \right\}$$

and the subgroup

$$M[\mathcal{V}_E]_0 = \left\{ \sum m_w \cdot w \in M[\mathcal{V}_E] \mid \sum m_w = 0 \right\}$$

of such sums with zero sum of the coefficients. The finite group $\Gamma = \Gamma_{E/F}$ naturally acts on $M[\mathcal{V}_E]$ and on $M[\mathcal{V}_E]_0$.

Theorem (B-Kaletha 23)

For a global function field F, the map $\mathrm{ab}\colon H^1(F,G)\to H^1_{\mathrm{ab}}(F,G)$ is bijective, and

$$H^1(F,G) \cong H^1_{ab}(F,G) \cong \left(M[\mathcal{V}_E]_0 \right)_{\Gamma,\mathrm{Tors}}.$$

Questions?

Over global function field: Exact sequence

We have a short exact sequence of $\Gamma\text{-modules}$

$$0 \to M[\mathcal{V}_E]_0 \xrightarrow{i} M[\mathcal{V}_E] \xrightarrow{\Sigma} M \to 0.$$

It gives rise to the following exact sequence:

$$\bigoplus_{v \in \mathcal{V}_F} H_1(\Gamma_w, M) \xrightarrow{\Sigma_*} H_1(\Gamma, M) \xrightarrow{\delta} (M[\mathcal{V}_E]_0)_{\Gamma, \text{Tors}} \\
\xrightarrow{i_*} \bigoplus_{v \in \mathcal{V}_F} M_{\Gamma_w, \text{Tors}} \xrightarrow{\Sigma_*} M_{\Gamma, \text{Tors}},$$

where for each $v \in \mathcal{V}_F$ we choose a place $w \in \mathcal{V}_E$ over v, and we denote by Γ_w the stabilizer of w in Γ .

Localization

Let F be a global function field, and let $v_1 \in \mathcal{V}_F$ be a place of F. We have *closed formulas* for $H^1(F,G)$ and $H^1(F_{v_1},G)$. I describe the localization map $loc_{v_1} \colon H^1(F,G) \to H^1(F_{v_1},G)$.

I repeat: for a finite Galois extension ${\cal E}/{\cal F}$ as above, we consider the surjective map

 $p_{E/F} \colon \mathcal{V}_E \to \mathcal{V}_F, \ w \mapsto w|_F.$

For $v \in \mathcal{V}_F$, set $\mathcal{V}_E(v) = p_{E/F}^{-1}(v) \subset \mathcal{V}_E$. Then Γ acts on each of the finite sets $\mathcal{V}_E(v)$ transitively, and $\mathcal{V}_E = \bigcup_{v \in \mathcal{V}_F} \mathcal{V}_E(v)$.

Consider

$$M[\mathcal{V}_E(v)] = \Big\{ \sum m_w \cdot w \mid w \in \mathcal{V}_E(v), \, m_w \in M \Big\}.$$

Since $\mathcal{V}_E = \bigcup_{v \in \mathcal{V}_F} \mathcal{V}_E(v)$, we have $M[\mathcal{V}_E] = \bigoplus_{v \in \mathcal{V}_F} M[\mathcal{V}_E(v)]$. Consider the projection map

$$\lambda_v \colon M[\mathcal{V}_E]_0 \hookrightarrow M[\mathcal{V}_E] \twoheadrightarrow M[\mathcal{V}_E(v)]$$

and the induced map

 $l_{v} \colon \left(M[\mathcal{V}_{E}]_{0} \right)_{\Gamma, \text{Tors}} \to \left(M[\mathcal{V}_{E}(v)] \right)_{\Gamma, \text{Tors}} \cong M_{\Gamma_{w}, \text{Tors}}$

where the last isomorphism comes from the fact that Γ acts on $\mathcal{V}_E(v)$ transitively, and therefore the Γ -module $M[\mathcal{V}_E(v)]$ is *induced* by the Γ_w -module M.

This is our localization map. The map l_v is defined also for a *number field* F, though then it is not always the localization map.

H^1 over $\mathbb R$

Let $F = \mathbb{R}$, and let G be a connected reductive group over \mathbb{R} . I know how to compute $H^1(\mathbb{R}, G)$ (four papers and a computer program) in terms of combinatorial data describing G, in particular, the *root system*; however, this is a topic for a separate talk.

The abelianization map ab: $H^1(\mathbb{R},G) \to H^1_{ab}(\mathbb{R},G)$ is surjective. We have

 $H^1_{\mathrm{ab}}(\mathbb{R},G) \cong \widehat{H}^{-1}(\Gamma,M)$ (B-Timashev 23)

where $M = \pi_1(G)$, $\Gamma = \operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \gamma\}$, and \widehat{H}^{-1} denotes Tate cohomology. This follows immediately from the Tate-Nakayama theorem for the Galois extension \mathbb{C}/\mathbb{R} .

The group $\widehat{H}^{-1}(\Gamma,M)$ naturally embeds into $M_{\Gamma,{\rm Tors}}$, and we obtain a map

 $\alpha_{\mathbb{R}} \colon H^1(\mathbb{R}, G) \xrightarrow{\mathrm{ab}} H^1_{\mathrm{ab}}(\mathbb{R}, G) \cong \widehat{H}^{-1}(\Gamma_{\mathbb{C}/\mathbb{R}}, M) \hookrightarrow M_{\Gamma_{\mathbb{C}/\mathbb{R}}, \mathrm{Tors}}.$

H^1 over \mathbb{Q}

Let $F = \mathbb{Q}$ and G be a connected reductive \mathbb{Q} -group. Write $M = \pi_1(G)$. Let E/F be as above, that is, Γ_F acts on M via $\Gamma_{E/F}$, and assume that E has no real places. Write $\Gamma = \Gamma_{E/F}$. Let w be a place of E over the place ∞ of \mathbb{Q} ; then the stabilizer $\Gamma_w = \operatorname{Gal}(E_w/F_\infty) = \operatorname{Gal}(\mathbb{C}/\mathbb{R})$.

Consider the maps

(*)
$$(M[\mathcal{V}_E]_0)_{\Gamma,\mathrm{Tors}} \xrightarrow{l_{\infty}} M_{\Gamma_w,\mathrm{Tors}} \xleftarrow{\alpha_{\mathbb{R}}} H^1(\mathbb{R},G).$$

Theorem (B-Kaletha 23)

 $H^1(\mathbb{Q},G)$ is in a canonical bijection with the fibered product of the maps in (*). In other words, there is a bijection

 $\begin{aligned} &H^1(\mathbb{Q},G) \xrightarrow{\sim} \\ &\{(x,\xi_{\mathbb{R}}) \mid x \in (M[\mathcal{V}_E]_0)_{\Gamma,\mathrm{Tors}}, \ \xi_{\mathbb{R}} \in H^1(\mathbb{R},G), \ l_{\infty}(x) = \alpha_{\mathbb{R}}(\xi_{\mathbb{R}}) \\ \end{aligned}$

Questions?

H^1 over a number field

Let G be a reductive group over an arbitrary number field F. Let E/F be as above. Consider the maps

(**)
$$(M[\mathcal{V}_E]_0)_{\Gamma_{E/F}, \text{Tors}} \xrightarrow{\prod_{\infty} l_v} \prod_{\infty} M_{\Gamma_w, \text{Tors}} \xleftarrow{\prod_{\infty} \alpha_v} \prod_{\infty} H^1(F_v, G)$$

where \prod_{∞} is taken over $v \in \mathcal{V}_{F,\infty}$ (the set of archimedean places of F), and for any $v \in \mathcal{V}_{F,\infty}$ we choose $w \in \mathcal{V}_{E,\infty}$ over v.

Theorem (B-Kaletha 23)

 $H^1(F,G)$ is in a canonical bijection with the fibered product of the maps in (**).

Questions?

This theorem describes $H^1(F,G)$ in terms of the Γ_{F} -module M and the real Galois cohomology sets $H^1(F_v,G)$ for $v \in \mathcal{V}_{F,\infty}$.

A trivial example over a number field

F is a number field, G is simply connected semisimple group. Then $M=\pi_1(G)=0,$ and

$$(M[V_E]_0)_{\Gamma_{E/F}, \text{Tors}} = 0, \quad H^1(F, G) \cong \prod_{\infty} H^1(F_v, G),$$

which is the celebrated Hasse principle of Kneser, Harder, and Chernousov. We don't give a new proof of this result; we *use* it.

$H^2(F,T)$

We also have a formula for $H^2(F,T)$ when T is an F-torus, where F is a local or global field. Write $M = \pi_1(T) = X_*(T)$.

Theorem (B.98 when char(F) = 0) If F is a non-archimedean local field, then

 $H^2(F,T) \cong M_{\Gamma_F} \otimes \mathbb{Q}/\mathbb{Z}.$

Theorem (B-Kaletha 23)

If F is a global function field, then

 $H^2(F,T) \cong \left(M[\mathcal{V}_E]_0 \right)_{\Gamma_{E/F}} \otimes \mathbb{Q}/\mathbb{Z}$

for a finite Galois extension E/F such that Γ_F acts on M via $\Gamma_{E/F}$.

When F is a number field, $H^2(F,T)$ is a certain fiber product.

H^1 : an example over \mathbb{Q} .

Let $F = \mathbb{Q}$, $E = \mathbb{Q}(\sqrt{13}, \sqrt{17})$, $T = R^1_{E/\mathbb{Q}} \mathbb{G}_m$. Then $\Gamma := \Gamma_{E/\mathbb{Q}} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and a calculation shows that all decomposition groups for E/\mathbb{Q} are *cyclic*. It follows that $H^1(F_v, T)$ is killed by 2 for all places $v \in \mathcal{V}_{\mathbb{Q}}$. We have the Kottwitz exact sequence

$$0 \to \operatorname{III}^{1}(\mathbb{Q}, T) \to H^{1}(\mathbb{Q}, T) \to \bigoplus_{v} H^{1}(F_{v}, T) \to \mathbb{Z}/2\mathbb{Z} \to 0$$

from which we see that $H^1(F,T)/ \operatorname{III}^1(F,T)$ is killed by 2. Moreover, Sansuc 81 showed that $\operatorname{III}^1(\mathbb{Q},T) \simeq \mathbb{Z}/2\mathbb{Z}$.

On the other hand, since $|\Gamma| = 4$, we see that the group $H^1(\mathbb{Q}, T) = H^1(\Gamma, T(E))$ is killed by 4.

Question. Is there an element of order 4 in $H^1(\mathbb{Q},T)$?

H^1 : an example over \mathbb{Q} (cont.)

We have

 $H^1(\mathbb{Q},T) \cong \left(M[V_E]_0 \right)_{\Gamma,\mathrm{Tors}} = \widehat{H}^{-1}(\Gamma, M[V_E]_0).$

Using computer, one can show that

 $\widehat{H}^{-1}(\Gamma, M[V_E]_0) \simeq \mathbb{Z}/4\mathbb{Z} \oplus A_2$

where A_2 is an infinite abelian group killed by 2. Thus the answer is Yes, $H^1(\mathbb{Q},T)$ does contain an element of order 4.

Questions?

H^1 : an example over \mathbb{Q} (details)

We compute $\widehat{H}^{-1}(\Gamma, M[V_E]_0)$ using computer as follows. We construct a certain finite subset $X_E \subset V_E$, $|X_E| = 10$, such that there is an isomorphism of Γ -modules

 $M[V_E]_0 \simeq M[X_E]_0 \oplus M[Y_E]$

where $Y_E = V_E \smallsetminus X_E$. We obtain an isomorphism

 $\widehat{H}^{-1}(\Gamma, M[V_E]_0) \simeq \widehat{H}^{-1}(\Gamma, M[X_E]_0) \oplus \widehat{H}^{-1}(\Gamma, M[Y_E]).$

Since the stabilizer of each element of Y_E is of order 1 or 2, we see that $\widehat{H}^{-1}(\Gamma, M[Y_E])$ is killed by 2.

On the other hand, I computed $\widehat{H}^{-1}(\Gamma, M[V_E]_0)$ using computer and got $\mathbb{Z}/4\mathbb{Z}$.

Idea of proof: reduction to $H^1_{\rm ab}$

I want to compute $H^1(F,G)$ for a connected reductive group G over a number field F. By B.98, $H^1(F,G)$ fits into a Cartesian diagram

$$\begin{array}{c|c} H^1(F,G) & \xrightarrow{\mathrm{ab}} & H^1_{\mathrm{ab}}(F,G) \\ & & \downarrow & \downarrow \\ \mathrm{loc}_{\infty} & & \downarrow & \downarrow \\ & & & \downarrow \\ \Pi_{\infty} H^1(F_v,G) & \xrightarrow{\Pi_{\infty} \, \mathrm{ab}_v} & \prod_{\infty} H^1_{\mathrm{ab}}(F_v,G) \end{array}$$

where \prod_{∞} means $\prod_{v \in \mathcal{V}_{\infty}(F)}$, the product over the infinite places of F. Here "Cartesian" means that $H^1(F, G)$ is the fiber product.

Thus computing $H^1(F,G)$ reduces to computing $H^1_{ab}(F,G)$ and computing $H^1(F_v,G)$ for *real* places v of F.

Computing H^1_{ab}

For a connected reductive group G over a global field F, I wish to compute

$$H^1_{\rm ab}(F,G) \coloneqq \mathbb{H}^1(F,T^{\rm sc} \to T).$$

By a definition,

$$\mathbb{H}^{1}(F, T^{\mathrm{sc}} \to T) = \varinjlim_{K} \left(\mathbb{H}^{1}(K/F, T^{\mathrm{sc}} \to T), \mathrm{Inf}_{K'/K} \right)$$

where K runs over *finite* Galois extensions of F in F^s containing E, and for $K' \supset K$,

$$\mathrm{Inf}_{K'/K} \colon \mathbb{H}^1(K/F, T^{\mathrm{sc}} \to T) \to \mathbb{H}^1(K'/F, T^{\mathrm{sc}} \to T)$$

is the inflation map.

Extending a result of Tate 66 for one torus to a *complex of tori*, for any such K we obtain an isomorphism

$$\widehat{H}^{-1}(K/F, M[\mathcal{V}_K]_0) \xrightarrow{\sim} \mathbb{H}^1(K/F, T^{\mathrm{sc}} \to T).$$

where \widehat{H}^{-1} denotes the Tate cohomology.

Computing H^1_{ab} (cont.)

We define a homomorphism

 $?_{K'/K} \colon \widehat{H}^{-1}(K/F, M[\mathcal{V}_K]_0) \to \widehat{H}^{-1}(K'/F, M[\mathcal{V}_{K'}]_0)$

by the commutative diagram

$$\widehat{H}^{-1}(K/F, M[\mathcal{V}_K]_0) \xrightarrow{\sim}_{\text{Tate 66}} \mathbb{H}^1(K/F, T^{\text{sc}} \to T)$$

$$\begin{array}{c} & & \\ & \\ &$$

This homomorphism $?_{K'/K}$ is *not inflation:* there is no inflation in Tate cohomology \widehat{H}^n for $n \leq 0$. To compute $H^1_{ab}(F,G)$, it remains to guess the map $?_{K'/K}$ (which is not that hard), to prove that the diagram indeed commutes with this $?_{K'/K}$ (which was hard for me), and to compute the limit

$$\lim_{K} \left(\widehat{H}^{-1}(K/F, M[\mathcal{V}_K]_0), ?_{K'/K} \right).$$

References

• M. Borovoi, Abelian Galois cohomology of reductive groups. Mem. Amer. Math. Soc. 132 (1998), no. 626.

• M. Borovoi and T. Kaletha, Galois cohomology of reductive groups over global fields. arXiv:2303.04120.

• M. Borovoi and D. A. Timashev, Galois cohomology and component group of a real reductive group. To appear in Israel J. Math.

• C. D. González-Avilés, Quasi-abelian crossed modules and nonabelian cohomology. J. Algebra 369 (2012), 235–255.

• R. E. Kottwitz, Stable trace formula: elliptic singular terms. Math. Ann. 275 (1986), no. 3, 365–399.

• J. Tate, The cohomology groups of tori in finite Galois extensions of number fields. Nagoya Math. J. 27 (1966), 709–719.

Thank you!