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Thank you for inviting me to give a talk in this seminar.
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Let F be a field,
F be a fixed algebraic closure of F ,
F s ⊆ F be the separable closure of F in F .

If char(F ) = 0, then F s = F .
Let ΓF = Gal(F s/F ), the absolute Galois group of F . Then (F s)ΓF = F .

Let G be a linear algebraic group over F . We may regard G as
G ⊆ GLn(F ) defined by polynomials with coefficients in F .

We denote by G(F s) ⊆ GLn(F
s) and G(F ) ⊆ GLn(F )

the corresponding groups of points. Then ΓF acts of G(F s)
via the action on the matrix entries

(γ, g) 7→ γg for γ ∈ ΓF , g ∈ G(F s).

We have
G(F s)ΓF = G(F ).
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Galois cohomology

Z1(F,G) is the set of locally constant maps c : ΓF → G(F s) satisfying the
cocycle condition

c(γδ) = c(γ) · γc(δ) for all γ, δ ∈ ΓF .

The group G(F s) acts on Z1(F,G) on the right by twisted conjugation

(c ∗ g)(γ) = g−1 · c(γ) · γg for c ∈ Z1(F,G), g ∈ G(F s), γ ∈ ΓF .

By definition,
H1(F,G) = Z1(F,G)/G(F s).

A priori H1(F,G) is just a pointed set (not a group),
with a distinguished point 1, the class of the cocycle 1.

If G is commutative, then H1(F,G) is naturally an abelian group,
and one can define abelian groups H i(F,G) for all i ≥ 0.

March 14, 2023 4 / 36



Example

Assume that G is a constant finite F -group, that is, the group G(F s) is
finite and ΓF acts on G(F s) trivially; in other words, G(F s) = G(F ).
Then

Z1(F,G) = Hom
(
ΓF , G(F s)

)
and

H1(F,G) = Hom
(
ΓF , G(F s)

)
/conjugation.

For general G, the definition of H1(F,G) it not intuitive, and we cannot
compute the Galois cohomology directly from the definition, in particular
because we do not know the Galois group ΓF .
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Applications of Galois cohomology

Let X be a quasi-projective algebraic variety with additional structure,
defined over F (for example, an algebraic F -group or a homogeneous
space). Assume that G = Aut(X). We wish to classify the twisted
F s/F -forms of X, that is, the isomorphism classes of F -varieties with
similar structure X ′ such that

X ′ ×F F s ≃ X ×F F s.
They are classified by H1(F,G).

Similarly, let V be a finite dimensional vector space over F , and let
t ∈ (V ∗)⊗m ⊗ V ⊗n

be a tensor (for example, a bilinear form or a structure of Lie algebra).
Write

G = Stab(t) ∈ GL(V ).
Then the twisted forms of the pair (V, t) are classified by H1(F,G).

We see that in all classification problems over a nonclosed field in algebraic
geometry and linear algebra, one needs Galois cohomology.
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Global and local fields

The theory of Galois cohomology H1(F,G) does depend on the field F .
For example, when F = Fq is a finite field, we have H1(F,G) = 1 for all
connected groups G (Lang’s theorem).

I will discuss H1(F,G) in the case when F is a local field or a global field.

A global field of characteristic 0 is a number field: a finite extension of the
field of rational numbers Q.

A global field F of characteristic p > 0 is a global function field: the field
of rational functions on an algebraic curve over a finite field Fq of
cardinality q = pl for some natural l. In other words, F is a finite
extension of the field Fq(x) of rational functions in one variable over a
finite field Fq.

We consider places v of our global field F , that is, absolute values up to
equivalence. Then Fv denotes the completion of F with respect to v.
These completions are called local fields.
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Algebraic fundamental group of a reductive group

Let G be a connected reductive algebraic group over a field F .
Example. G = GOn,F = {g ∈ GL(n, F ) | g · gT = λIn, λ ∈ F

×}.
Let Gsc be the universal cover of the commutator subgroup [G,G] of G.
In our example, [G,G] = SOn,F and Gsc = Spinn,F . Consider

ρ : Gsc ↠ [G,G] ↪→ G.

Let T ⊆ G be a maximal torus. Set T sc = ρ−1(T ) ⊆ Gsc and consider

ρ : T sc → T, ρ∗ : X∗(T
sc)→ X∗(T ),

where X∗(T ) = Hom(Gm,F , TF ) denotes the cocharacter group of T .

We set
π1(G) = X∗(T )/ρ∗X∗(T

sc).

The Galois group ΓF naturally acts on π1(G), and the obtained
ΓF -module does not depend on the choice of T .

In characteristic 0, our algebraic fundamental group π1(G) of B.98 can be
non-formally regarded as the topological fundamental group πtop

1 (G(C))
defined algebraically.
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Algebraic fundamental group (cont.)

Examples.

G is a simply connected semisimple group, say, SLn. Then
π1(G) = 0.

G = PGLn = SLn/µn. Then π1(G) = Z/nZ, whereas πét(G) = µn.

G = Gm,F . Then π1(G) = Z, whereas πét(G) = lim←−µn = Ẑ(1).

E/F a separable quadratic extension with Galois group
ΓE/F = {1, γ} of order 2. Consider the 1-dimensional torus

G = R1
E/FGm := ker

[
NE/F : RE/FGm → Gm,F

]
with the group of F -points ker[E× → F×]. Then π1(G) ≃ Z
(because G is a 1-dimensional torus), γ ∈ ΓE/F acts on π1(G) ≃ Z
by multiplication by −1, and ΓF acts on π1(G) via ΓE/F .
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The abelianization map

Consider the complex of tori T
−1

sc ρ−−→ T
0

in degrees −1 and 0.

We define (using cocycles) the abelian group

H1
ab(F,G) = H1(F, T sc → T ) := H1

(
ΓF , T

sc(F s)→ T (F s)
)

where the hypercohomology H1 is a kind of mixture of H1(F, T ) and
H2(F, T sc). Our H1

ab(F,G) depends only on the ΓF -module π1(G).

Moreover, we define the abelianization map

ab: H1(F,G)→ H1
ab(F,G),

which fits into the exact sequence

H1(F,Gsc)
ρ∗−−→ H1(F,G)

ab−−→ H1
ab(F,G).

For a local or global field F , the map ab is surjective.
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Abelianization map: construction

I recall the construction of the abelianization map from B.98.
We consider the complex of nonabelian groups

Gsc → G

with Gsc in degree −1. This complex is a crossed module: the group G
naturally acts on Gsc, and this action is compatible with the actions of G
on G and of Gsc on Gsc by conjugation. Using this structure of a crossed
module, the speaker defined in B.98 the first Galois hypercohomology set

H1(F,Gsc → G).

The inclusion
(T sc → T ) ↪→ (Gsc → G)

is a quasi-isomorphism: it induces isomorphisms on the kernels and the
cokernels. Thus the induced map

H1(F, T sc → T )→ H1(F,Gsc → G)

is a bijection.
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Abelianization map: construction (cont.)

On the other hand, the inclusion of crossed modules

(1→ G) ↪→ (Gsc → G)

induces a natural map

H1(F,G) = H1(F, 1→ G)→ H1(F,Gsc → G).

We obtain our abelianization map:

ab: H1(F,G)→ H1(F,Gsc → G)
∼−→ H1(F, T sc → T ) =: H1

ab(F,G).
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Cohomology over a non-archimedean local field

Write M = π1(G), and let MΓF
denote the group of coinvariants of ΓF in

M :
MΓF

= M/⟨γm−m | γ ∈ ΓF , m ∈M⟩.

Write MΓF ,Tors = (MΓF
)Tors for the torsion subgroup of MΓF

.

Theorem (B.98, González-Avilés 12, goes back to Kottwitz 86)

For a non-archimedean local field F , the map

ab: H1(F,G)→ H1
ab(F,G)

is bijective, and

H1(F,G) ∼= H1
ab(F,G) ∼= MΓF ,Tors.

Questions?
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Over non-archimedean local fields: Trivial examples

G is a simply connected semisimple F -group. Then M := π1(G) = 0,
whence

H1(F,G) = MΓ,Tors = 0

(theorem of Kneser and of Bruhat and Tits). We don’t give a new
proof of Kneser’s theorem; we use it.

G = Gm,F , the 1-dimensional split F -torus. Then M = Z, ΓF acts
on M = Z trivially,

MΓF
= Z, MΓF ,Tors = 0, H1(F,Gm,F ) = 1

(well-known: Hilbert’s Theorem 90).
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A less trivial example

E/F a separable quadratic extension, G = R1
E/FGm is the

1-dimensional F -torus with

G(F ) = ker
[
NE/F : E× → F×],

M ≃ Z, ΓF acts on M via Γ := ΓE/F = {1, γ}, where γ acts on
M ≃ Z by γm = −m. An easy calculation shows that

MΓF ,Tors = MΓF
∼= Z/2Z.

(indeed, m− γm = m− (−m) = 2m). Thus H1(F,G) ∼= Z/2Z.
This result is well-known. Indeed, we have

H1(F,G) = H1(E/F,G) ∼= F×/NE/F (E
×) ∼= ΓE/F

∼= Z/2Z.
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Over global field: what is known?

Let F be a global field,
G be a connected reductive group over F ,
VF the set of places of F .
For any place v ∈ VF we have the localization map

locv : H
1(F,G)→ H1(Fv, G).

Thus we obtain a map

loc : H1(F,G)→
∏
v∈VF

H1(Fv, G).

This map actually takes values in⊕
v∈VF

H1(Fv, G) :=
{
(ξv) ∈

∏
v∈VF

H1(Fv, G)
∣∣∣ ξv = 1 for almost all v.

}
.
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What is known (cont.)

There is an exact sequence of Kottwitz 86

(K) 1→ X(F,G)→ H1(F,G)
loc−−→

⊕
v∈VF

H1(Fv, G)
Σ−−→MΓF ,Tors

where the map Σ is easy to describe. Thus we know the image im loc.

On the other hand, the Tate-Shafarevich kernel X(F,G) = ker loc has a
canonical structure of a finite abelian group (Sansuc 81), and Kottwitz 86
computed this group. It can be computed in terms of M = π1(G) (B.98).
This group X(F,G) acts simply transitively on each non-empty fiber of
the map loc.

Thus we know all groups and sets in the exact sequence (K), except for
H1(F,G). The novel part of my talk is a closed formula for H1(F,G).
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Global field

Let F be a global field, M = π1(G). Let E/F be a finite Galois extension
in F s such that Gal(F s/E) acts on M trivially.
Set Γ = ΓE/F ; then Γ acts on M .

Let VE denote the set of places of E. The Galois group Γ = ΓE/F acts on
E, and so it naturally acts on VE . Consider the surjective map

pE/F : VE → VF , w 7→ w|F .

For v ∈ VF , set VE(v) = p−1
E/F (v) ⊂ VE . In other words, VE(v) is the set

of all places (absolute values) w of E extending the place v of F . Then Γ
acts on each of the finite sets VE(v) transitively, that is, each VE(v) is an
orbit of Γ. We have

VE =
⋃

v∈VF

VE(v).
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Cohomology over a global function field

Following Tate 66, we consider the group of finite formal linear
combinations

M [VE ] =
{ ∑

w∈VE

mw · w
∣∣ mw ∈M

}
and the subgroup

M [VE ]0 =
{∑

mw · w ∈M [VE ]
∣∣ ∑

mw = 0
}

of such sums with zero sum of the coefficients. The finite group Γ = ΓE/F

naturally acts on M [VE ] and on M [VE ]0.

Theorem (B-Kaletha 23)

For a global function field F , the map ab: H1(F,G)→ H1
ab(F,G) is

bijective, and

H1(F,G) ∼= H1
ab(F,G) ∼=

(
M [VE ]0

)
Γ,Tors

.

Questions?
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Over global function field: Exact sequence

We have a short exact sequence of Γ-modules

0→M [VE ]0
i−−→M [VE ]

Σ−−→M → 0.

It gives rise to the following exact sequence:⊕
v∈VF

H1(Γw,M)
Σ∗−−→ H1(Γ,M)

δ−−→
(
M [VE ]0

)
Γ,Tors

i∗−−→
⊕
v∈VF

MΓw,Tors
Σ∗−−→MΓ,Tors ,

where for each v ∈ VF we choose a place w ∈ VE over v, and we denote
by Γw the stabilizer of w in Γ.
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Localization

Let F be a global function field, and let v1 ∈ VF be a place of F . We
have closed formulas for H1(F,G) and H1(Fv1 , G). I describe the
localization map locv1 : H

1(F,G)→ H1(Fv1 , G).

I repeat: for a finite Galois extension E/F as above, we consider the
surjective map

pE/F : VE → VF , w 7→ w|F .
For v ∈ VF , set VE(v) = p−1

E/F (v) ⊂ VE . Then Γ acts on each of the finite

sets VE(v) transitively, and VE =
⋃

v∈VF
VE(v).
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Consider

M [VE(v)] =
{∑

mw · w
∣∣ w ∈ VE(v), mw ∈M

}
.

Since VE =
⋃

v∈VF
VE(v), we have M [VE ] =

⊕
v∈VF

M [VE(v)]. Consider
the projection map

λv : M [VE ]0 ↪→M [VE ] ↠ M [VE(v)]

and the induced map

lv :
(
M [VE ]0

)
Γ,Tors

→
(
M [VE(v)]

)
Γ,Tors

∼= MΓw,Tors

where the last isomorphism comes from the fact that Γ acts on VE(v)
transitively, and therefore the Γ-module M [VE(v)] is induced by the
Γw-module M .
This is our localization map. The map lv is defined also for a number field
F , though then it is not always the localization map.
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H1 over R

Let F = R, and let G be a connected reductive group over R. I know how
to compute H1(R, G) (four papers and a computer program) in terms of
combinatorial data describing G, in particular, the root system; however,
this is a topic for a separate talk.

The abelianization map ab: H1(R, G)→ H1
ab(R, G) is surjective. We

have
H1

ab(R, G) ∼= Ĥ−1(Γ,M) (B-Timashev 23)

where M = π1(G), Γ = Gal(C/R) = {1, γ}, and Ĥ−1 denotes Tate
cohomology. This follows immediately from the Tate-Nakayama theorem
for the Galois extension C/R.

The group Ĥ−1(Γ,M) naturally embeds into MΓ,Tors , and we obtain a
map

αR : H
1(R, G)

ab−−→ H1
ab(R, G) ∼= Ĥ−1(ΓC/R,M) ↪→MΓC/R,Tors.
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H1 over Q

Let F = Q and G be a connected reductive Q-group. Write M = π1(G).
Let E/F be as above, that is, ΓF acts on M via ΓE/F , and assume that
E has no real places. Write Γ = ΓE/F . Let w be a place of E over the
place ∞ of Q; then the stabilizer Γw = Gal(Ew/F∞) = Gal(C/R).

Consider the maps

(∗) (M [VE ]0)Γ,Tors
l∞−−→ MΓw,Tors

αR←− H1(R, G).

Theorem (B-Kaletha 23)

H1(Q, G) is in a canonical bijection with the fibered product of the maps
in (∗). In other words, there is a bijection

H1(Q, G)
∼−−→{

(x, ξR)
∣∣ x ∈ (M [VE ]0)Γ,Tors , ξR ∈ H1(R, G), l∞(x) = αR(ξR)

}
.

Questions?
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H1 over a number field

Let G be a reductive group over an arbitrary number field F . Let E/F be
as above. Consider the maps

(∗∗) (M [VE ]0)ΓE/F ,Tors

∏
∞ lv //

∏
∞MΓw,Tors

∏
∞H1(Fv, G)

∏
∞ αvoo

where
∏

∞ is taken over v ∈ VF,∞ (the set of archimedean places of F ),
and for any v ∈ VF,∞ we choose w ∈ VE,∞ over v.

Theorem (B-Kaletha 23)

H1(F,G) is in a canonical bijection with the fibered product of the maps
in (∗∗).

Questions?

This theorem describes H1(F,G) in terms of the ΓF -module M and the
real Galois cohomology sets H1(Fv, G) for v ∈ VF,∞.
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A trivial example over a number field

F is a number field, G is simply connected semisimple group. Then
M = π1(G) = 0, and(

M [VE ]0
)
ΓE/F ,Tors

= 0, H1(F,G) ∼=
∏
∞

H1(Fv, G),

which is the celebrated Hasse principle of Kneser, Harder, and Chernousov.
We don’t give a new proof of this result; we use it.
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H2(F, T )

We also have a formula for H2(F, T ) when T is an F -torus, where F is a
local or global field. Write M = π1(T ) = X∗(T ).

Theorem (B.98 when char(F ) = 0)

If F is a non-archimedean local field, then

H2(F, T ) ∼= MΓF
⊗Q/Z.

Theorem (B-Kaletha 23)

If F is a global function field, then

H2(F, T ) ∼=
(
M [VE ]0

)
ΓE/F

⊗Q/Z

for a finite Galois extension E/F such that ΓF acts on M via ΓE/F .

When F is a number field, H2(F, T ) is a certain fiber product.
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H1: an example over Q.

Let F = Q, E = Q
(√

13,
√
17

)
, T = R1

E/QGm . Then

Γ := ΓE/Q ≃ Z/2Z×Z/2Z, and a calculation shows that all
decomposition groups for E/Q are cyclic. It follows that H1(Fv, T ) is
killed by 2 for all places v ∈ VQ. We have the Kottwitz exact sequence

0→ X1(Q, T )→ H1(Q, T )→
⊕
v

H1(Fv, T )→ Z/2Z→ 0

from which we see that H1(F, T )/ X1(F, T ) is killed by 2. Moreover,
Sansuc 81 showed that X1(Q, T ) ≃ Z/2Z.

On the other hand, since |Γ| = 4, we see that the group
H1(Q, T ) = H1

(
Γ, T (E)

)
is killed by 4.

Question. Is there an element of order 4 in H1(Q, T ) ?
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H1: an example over Q (cont.)

We have

H1(Q, T ) ∼=
(
M [VE ]0

)
Γ,Tors

= Ĥ−1(Γ,M [VE ]0).

Using computer, one can show that

Ĥ−1(Γ,M [VE ]0) ≃ Z/4Z⊕A2

where A2 is an infinite abelian group killed by 2. Thus the answer is Yes,
H1(Q, T ) does contain an element of order 4.

Questions?

March 14, 2023 29 / 36



H1: an example over Q (details)

We compute Ĥ−1(Γ,M [VE ]0) using computer as follows.
We construct a certain finite subset XE ⊂ VE , |XE | = 10, such that there
is an isomorphism of Γ-modules

M [VE ]0 ≃M [XE ]0 ⊕M [YE ]

where YE = VE ∖XE . We obtain an isomorphism

Ĥ−1
(
Γ,M [VE ]0

)
≃ Ĥ−1

(
Γ,M [XE ]0

)
⊕ Ĥ−1

(
Γ,M [YE ]

)
.

Since the stabilizer of each element of YE is of order 1 or 2, we see that
Ĥ−1

(
Γ,M [YE ]

)
is killed by 2.

On the other hand, I computed Ĥ−1(Γ,M [VE ]0) using computer and got
Z/4Z.
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Idea of proof: reduction to H1
ab

I want to compute H1(F,G) for a connected reductive group G over a
number field F . By B.98, H1(F,G) fits into a Cartesian diagram

H1(F,G)
ab //

loc∞
��

H1
ab(F,G)

loc∞
��∏

∞H1(Fv, G)

∏
∞ abv //

∏
∞H1

ab(Fv, G)

where
∏

∞ means
∏

v∈V∞(F ), the product over the infinite places of F .

Here ”Cartesian” means that H1(F,G) is the fiber product.

Thus computing H1(F,G) reduces to computing H1
ab(F,G) and

computing H1(Fv, G) for real places v of F .
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Computing H1
ab

For a connected reductive group G over a global field F , I wish to compute

H1
ab(F,G) := H1(F, T sc → T ).

By a definition,

H1(F, T sc→ T ) = lim−→
K

(
H1(K/F, T sc→ T ), InfK′/K

)
where K runs over finite Galois extensions of F in F s containing E, and
for K ′ ⊃ K,

InfK′/K : H1(K/F, T sc→ T )→ H1(K ′/F, T sc→ T )

is the inflation map.

Extending a result of Tate 66 for one torus to a complex of tori, for any
such K we obtain an isomorphism

Ĥ−1(K/F,M [VK ]0)
∼−−→H1(K/F, T sc → T ).

where Ĥ−1 denotes the Tate cohomology.
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Computing H1
ab (cont.)

We define a homomorphism

?K′/K : Ĥ−1(K/F,M [VK ]0)→ Ĥ−1(K ′/F,M [VK′ ]0)

by the commutative diagram

Ĥ−1(K/F,M [VK ]0)
∼

Tate 66
//

?K′/K
��

H1(K/F, T sc → T )

InfK′/K
��

Ĥ−1(K ′/F,M [VK′ ]0)
∼

Tate 66
// H1(K ′/F, T sc → T )

This homomorphism ?K′/K is not inflation: there is no inflation in Tate

cohomology Ĥn for n ≤ 0. To compute H1
ab(F,G), it remains to guess

the map ?K′/K (which is not that hard), to prove that the diagram indeed
commutes with this ?K′/K (which was hard for me), and to compute the
limit

lim−→
K

(
Ĥ−1(K/F,M [VK ]0), ?K′/K

)
.
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• C. D. González-Avilés, Quasi-abelian crossed modules and nonabelian
cohomology. J. Algebra 369 (2012), 235–255.

• R. E. Kottwitz, Stable trace formula: elliptic singular terms. Math. Ann.
275 (1986), no. 3, 365–399.

• J. Tate, The cohomology groups of tori in finite Galois extensions of
number fields. Nagoya Math. J. 27 (1966), 709–719.

Thank you!
March 14, 2023 34 / 36



March 14, 2023 35 / 36



March 14, 2023 36 / 36


